All slides and a recording of the webinar are available on the website later this afternoon

- CBI Update
- Job Retention Scheme Update
- Technical Update
- Local Exhaust Ventilation - Adrian Sims, Vent-Tech Ltd & Jane Bastow, P & J Dust Extraction Ltd

POLL:
Are you or anybody in your company having difficulty in managing work and childcare at the same time?
CORONAVIRUS JOB RETENTION SCHEME
Webinar 16 June 2020
UPDATE

Paula Samuels
BESA Head of Employment Affairs
• The CJRS introduced in March 2020 aimed at safeguarding the jobs and livelihoods of millions of workers.

• To date, the Scheme has supported 8.7 million furloughed workers, across 1 million businesses at a cost of £17 billion.

• Over 150,000 construction firms submitted a claim to HMRC in respect of 680,000 furloughed staff amounting to nearly £1.8 bn.

• 29 May – Chancellor announced changes – confirmed tapering down of Scheme before it ends on 31 October, introduced ‘flexible furloughing’ from 1 July and employer contribution from 1 August

• 12 June – updated and new Guidance issued by HMRC
HOW THE SCHEME IS CHANGING

<table>
<thead>
<tr>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
<th>SEPTEMBER</th>
<th>OCTOBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 June: Scheme closes to new entrants as new flexibilities are introduced from 1 July</td>
<td>Employers can start bringing furloughed staff back to work gradually on reduced hours. Government continues to pay 80% of furloughed wages up to £2,500 monthly cap</td>
<td>Government pays 80% of wages up to £2,500 cap Employer now pays employers National Insurance Contributions (eNIC) and pension contributions</td>
<td>Government pays 60% of furloughed staff wages up to £1,875 cap. Employers share the cost of Furlough: 60% funded 20% employer contribution: £1,875 (HMRC) £625 (Employer)</td>
<td>Government pays 60% of furloughed staff wages up to £1,875 cap. Employers share the cost of Furlough: 60% funded 20% employer contribution: £1,875 (HMRC) £625 (Employer)</td>
</tr>
<tr>
<td>10 June: deadline by which an employer could furlough an employee for the first time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NEW HMRC policy paper: Changes to the Coronavirus Job Retention Scheme - summarises the changes that will take effect from 1 July 2020

NEW HMRC guidance: Steps to take before calculating your claim using the Coronavirus Job Retention Scheme – examines a series of considerations, investigations and calculations that are needed before submitting a claim under the revised CJRS

https://www.gov.uk/guidance/steps-to-take-before-calculating-your-claim-using-the-coronavirus-job-retention-scheme

NEW HMRC guidance: Calculate how much you can claim using the Coronavirus Job Retention Scheme – examines the mechanics of claim calculation under the revised Scheme, including worked examples

TR40
Local Exhaust Ventilation
16th June 2020
Introduction

Jane Bastow CMIOSH, MILEVE
Owner of P&J Dust Extraction Ltd
Chair of the BESA TR40 drafting committee
Former chair of ILEVE

Adrian Sims
Owner of Vent-Tech Ltd
Member of BESA TR40 drafting committee
Vice chair of ILEVE

P&J
SPECIALIST LEV ENGINEERS
DUST & PUME CONTROL SINCE 1980

vent-tech
industrial environment control
Drafting committee

Started back in 2010

Set up by Gareth Keller (BESA) Jane Bastow & James Wheeler (HSE)

Early active members included:
• George Friend,
• Brian Townsend – End systems,
• Gary Sprawling - ALS

Finishing expert panel:
• Jane Bastow (chair) – P&J Dust Extraction ltd
• Phillipe de Wilde - Roperhurst
• Rob Mackay – Callenberg
• Adrian Sims – Vent-Tech
Why LEV?
COSHH Regulation 7 – Hierarchy of Control

- Design and operate processes to minimise emissions
- Take into account all routes of exposure
- Control measures - proportionate to the health risk
- Choose the most effective and reliable control options
- Provide suitable PPE / RPE where adequate control cannot be achieved by other means
- Check and review regularly all elements of control
- Inform & train on hazards and use of control measures
- Ensure do not increase other/overall risks
Why TR40?
Why TR40

- **8,000** cancer deaths and **13,000 new cases** of cancer each year.

- **12,000** deaths per year from respiratory disease - HSE - 32 people per day!

- There are currently an estimated **18,000 new cases** of breathing or lung problems caused or made worse by work each year among those in, or recently in, work.

- Exposures to asbestos (either mesothelioma or asbestos-related lung cancer) accounts for approx. 2,400 deaths per year.

- The next three biggest categories of occupational cancer were lung cancer due to:
 - Silica
 - Diesel engine exhaust
 - Mineral oils
Has HSG258 introduced 2008 decreased ill heath 10 years later?

Estimated rate of new cases of occupational asthma relative to 2018

- Shaded area represents a 95% confidence interval.
£9.8 Billion
£9,800,000,000

Annual costs of new cases of work–related ill health in 2017 – 2018
(excluding long latency disease such as cancer)
Roles and responsibilities through the LEV process

Requirement
- Identify need for LEV and gain commitment (Section 1)

Design
- Sheet list and appoint consultants (LEV designer) (Section 4)
- Issue LEV specification (Section 5)

Specification
- Short list consultants and appoint LEV designer (Section 4)
- Sheet list and appoint consultants (LEV designer) (Section 6)

Procurement
- Select tender (Section 5)
- Short list consultants and appoint LEV designer (Section 4)

Planning
- Agree project program (Section 5)

Enabling Work
- Create health and safety plan (Section 6)

Installation
- Receive LEV system specifications and ensure compliance (Section 6)
- Site delivery of components (Section 7)

Manual & Commissioning
- Issue instruction manual (Section 6)

Handover
- Review design and installation (Section 5)

Operation & Maintenance
- Regular inspection and maintenance (Section 6)

Additional Notes
- LEV commissioning engineer
- LEV designer
- LEV installer
- LEV service engineer
- LEV test engineer

Membership means more
BESA President John Norfolk: “TR40 establishes a quality threshold against which all providers of LEV solutions will be assessed”

The BESA Competence Assessment Scheme provides independent accreditation of members’ technical competence and commercial capability.

Many organisations list LEV competency in their BESA profile they now need to comply with TR40
Owner
System Owner

- reviewing the process risk assessment and revising the control measures
- seeking **competent** advice from an LEV specialist
- ensuring that the LEV is commissioned and in the event of change,
- re-commissioned to identify if it remains effective.

Plant supervisor and operators

The LEV operators have explicit legal duties to:

- use the LEV for its intended use and as they have been trained and instructed to do and to report any defects discovered in the LEV to the appointed LEV responsible person in a timely manner. They should carry out routine daily, weekly and monthly inspections to ensure that the LEV is operating correctly and record these in the LEV log book (see Section 1f).
Design
The designer has a duty under Section 3 of the Health and Safety at Work Act 1974 to provide competent advice.

The requirement for effective LEV is set out in the COSHH Regulations.

Good practice is outlined in HSE guidance HSG 258 and detailed further in this document.

To alert users when effectiveness is compromised, or maintenance is needed, alarms such as airflow indicators are required.

Additionally, the LEV design must comply with applicable current regulations and best practice which include:

- fire and potentially explosive atmospheres (ATEX / DSEAR)
- environmental considerations
- noise regulations
- building control and fire protection
- planning conditions
- Construction (Design and Management) Regulations
- the Safety of Machinery Directive

The designer should be able to demonstrate their competence in designing effective LEV systems. An LEV designer should be a member of a relevant professional body and have proven competencies in the fields of both Occupational Hygiene and LEV engineering design.

The LEV designer should be asked for evidence of their professional indemnity insurance for LEV design and details of successfully completed LEV projects.

All of the following project information should be included:

- overview of the problem requiring LEV (of a similar size and nature to the proposed project), and the design parameters
- the work process to which the LEV is being applied
- particle size (mist, fume, dust, shavings)
- any special particle properties
- the hazardous substance being controlled
- the applicable occupational exposure limits (OEL)
- the agreed exposure control benchmark (this should not simply be a velocity, e.g. m/sec, ft/min)
- potential for creating an explosive atmosphere and the protective devices required
- copy of the commissioning report proving that control of the hazardous substance was effective
- what exposure reduction that was achieved.

Ask for the previous project’s employer’s contact details for reference purposes.
Installation
Installation

It is vitally important that the LEV installation is carried out in full accordance with the design.

Whilst the it is ducting, there is far more to an LEV system than fitting ductwork...

- Bends – long or short radius
- Boots – 90°, 45° or 30°
- Earth bonding?
- Explosion vent discharge to a safe, guarded area
- Leak proof joints?
- Access doors v Inspection hatches?
- Positioning?
- Labelling?

The installation contractor (electrical)

Electrical installation work must be undertaken by a competent person trained in the current regulations. All electrical installation work must be inspected and certified by a competent-registered electrician.

When evaluating the competence of an electrical installation contractor for LEV systems, ask for evidence to be provided of an experienced installation of a similar size and nature to the proposed project. All of the following information should be included:

- overview of the type of LEV system and associated services installed
- the work process to which the LEV is being applied
- the hazardous substance being controlled

Ask for contact details for previous projects for reference purposes.

All site operatives should be able to demonstrate relevant health and safety awareness training and competency for the task.

The installation contractor (mechanical)

The contractor should be a member of a relevant trade association and individual employees should have appropriate qualifications and experience.

When evaluating the competence of an LEV Installer, ask for evidence to be provided of a successfully completed LEV project of a similar size and nature to the proposed project. All of the following information should be included:

- overview of the type of LEV system and associated services installed
- the work process to which the LEV is being applied
- the hazardous substance being controlled

Ask for contact details for previous projects for reference purposes.

All site operatives should be able to demonstrate relevant health and safety awareness training and competency for the task.
Commissioning

Critical element of LEV installations that is often overlooked.

Includes...

✓ Check the entire system has been installed in accordance with the design

✓ Prove control effectiveness
 ✓ Air flow measurements
 ✓ Pressure measurements
 ✓ Qualitative tests
 ✓ Air / exposure monitoring

✓ Determine benchmarks for future testing

The LEV commissioning engineer should report on:

- the installation of the LEV system to the specification and verification that as-installed drawings are accurate
- confirmation that the LEV is in a good, clean, effective condition
- minor adjustments to ensure system effectiveness
- the undertaking of trial runs using surrogate materials
- commissioning of the LEV system using the usual materials, full or test process operating
- effective control of exposure to the hazardous substance within the agreed benchmark
- observations on the correct use of the LEV by the operator
- confirmation of system sign-off or recommendation of remedial actions and re-commissioning
- achievement of benchmark operating performance, airflow and other parameters to enable comparison with performance at each subsequent annual TEXT report.
Testing
Testing

Statutory requirements under COSHH Regulation 9 requires ALL systems to be tested

At least once in every 14 month period

Unless appears on Schedule 4.

Objective...

“To ensure that all control measures perform as originally intended and continue to prevent or adequately control exposure”

The thorough examination and test (TExT) engineer

The TExT engineer should have appropriate qualifications, experience and membership of professional body and have proven competencies in the fields of both occupational hygiene and LEV thorough examination and test (TExT).

All site operatives should be able to demonstrate asbestos awareness training and working at height training and competency.

When evaluating the competence of a TExT Engineer, ask for evidence to be provided; for example, details of a previous LEV TExT report of a similar size and nature to the LEV to be tested.

All of the following information should be included:

- the work process to which the LEV is being applied
- the hazardous substance being controlled
- the applicable OELs and other benchmarks detailed on the commissioning report
- comparison of the current data with the commissioning report data
- particle size (mist, fume, dust, shavings)
- were any improvements suggested? If so, were these presented in an action plan?

Ask for contact details for previous projects for reference purposes.
Evaluating Tenders
Evaluating Tenders

- Benchmark guarantee - exposure control NOT simply duct velocities
- Competence of the LEV supplier and sub-contractors
- Specification compliance
- Installation compliance
- Essential documents
- Evaluate whole-life LEV system costs
- Other considerations
Handover documents
Handover documents

Four key documents:

1. **O&M Manual – for LEV System**
 - Simple getting started instructions
 - Detailed technical information
 - Operation and use
 - Drawings
 - Spare parts
 - Troubleshooting guide

The employer has explicit legal duties to:

* maintain the LEV in good clean effective condition and to ensure that the system is used properly. An operations and maintenance (O&M) manual (user manual) should always be supplied. This should relate to the LEV system as a whole and not just to the LEV unit, and include all the items in Section 9.*
Handover documents

Four key documents:

2. **Log-book**

Descriptions and frequency of the user checks to be carried out and recorded in the log-book

Log-book contents

The log-book should be specific to each LEV system and contain:

- schedules for regular user checks and maintenance
- records of regular checks, maintenance, replacements and repairs
- checks on how the operator is using the LEV system
- the name of the person who made each check, and on what date
- the name of the employer’s LEV-responsible person, to whom problems should be reported to, and how
- details of problems reported
- space to report the results against each check item
- signature of person carrying out the checks, and date

The employer has explicit legal duties to:

- maintain the LEV in an efficient state, in good clean effective condition
- ensure that the system is used properly
- train users and operators to understand the risks and how the LEV protects their health if working correctly

The operator has explicit legal duties to:

- use the LEV in the way it is intended to be used, and as they have been instructed
- report promptly to the appointed person any concerns or defects with the LEV

The logbook enables the LEV owner to:

- ensure that problems or system deterioration is promptly identified and rectified
- establish an audit trail of system performance and maintenance
- provide evidence that the requirement to maintain the LEV system in good clean effective condition is being met.
Handover documents

Four key documents:

3. **Commissioning Report**
 - statutory commissioning report requirements
 - agreed benchmarks
 - when to test, and frequency of re-testing

When should a commissioning LEV report be done?
Commissioning LEV reports should be carried out after:

- electrical installation has been completed
- an IEE installation certificate or minor works form has been issued by the installing electrician
- snagging is completed
- the post-installation checklist is completed by the mechanical installation contractor
- operators have been given the O&M manual and some initial training.
- a standard working environment can be replicated (e.g. all mechanical ventilation and other works that may affect the working environment are completed or can be simulated.)
Handover documents

Four key documents:

4. **User Training records**
 - How to use the LEV
 - A training certificate should be issued to the individual operators
 - Records should be kept for everyone who has received training. This includes refresher training.
 - The LEV equipment should be labelled and operating procedures documented to show that only named, trained operators should be using the LEV.
 - It is good practice to record who has been trained in LEV documentation including the log-book.
 - Where commissioning and TExT reports have observed operation, the operator’s details should be noted.

Health & Safety at Work Act 1974:

- Duty not to interfere with or misuse things provided pursuant to certain provisions.
- No person shall intentionally or recklessly interfere with or misuse anything provided in the interests of health, safety or welfare in pursuance of any of the relevant statutory provisions.
TR40 is free to download for BESA members

If your organisation works with LEV contact Mark Oakes (mark.oakes@thebesa.com) at BESA about joining the BESA LEV specialist group
Q&A

covid19@thebesa.com
Q&A

Adrian Sims – Director, Vent Tech Ltd
Member of BESA TR40 drafting committee/Vice Chair ILEVE
www.linkedin.com
www.vent-tech.co.uk

Jane Bastow – Managing Director, P&J Dust Extraction Ltd
Chair of the BESA TR40 drafting committee/Former Chair of ILEVE
www.linkedin.com
www.pjdart.co.uk
Webinar Programme

Coming Up:

Wednesday 17th June – The Future of FM – technology and innovation in Facilities Management
- Mike Green – Chair, CLMA
- Rory Murphy – Commercial Director Vinci Facilities and Chair, RICS FM Professional Group
- Claire Curran – Managing Director, Linaker Ltd
- Giuseppe Borgese - Head of Facilities and Asset Management - Justice Services, Sodexo

Friday 19th June – Digital Twins & IoT – Neil Thompson

Tuesday 23rd June – World Refrigeration Day

Friday 26th June – Steven Boyd, CEO Government Property Agency

Monday 29th June – The Construction Roadmap to Recovery Plan – Stuart Young, BEIS & Hannah Vickers, ACE

Thursday 2nd July – BESA AGM (members only) 10am
SUPPORT FROM BESA

BESA Website: www.thebesa.com

Facebook:
Tag: @BESATraining
URL: www.facebook.com/BESATraining

Twitter:
Tag: @BESAGroup
URL: twitter.com/BESAGroup

LinkedIn:
Tag: BESA Group
URL: www.linkedin.com/company/besa-group
Thank you

www.thebesa.com/covid19
covid19@thebesa.com