

International Consultants in Product Research, Design, Development & Certification

BESA HIU TEST REPORT LogoEco G2 Dual M-Line

Client: Aalberts Hydronic Flow Control

Project Number: E4739 Report Issue: 2

23rd August 2022

Prepared By: <

Simon Broxham – Principal Engineer

Approved By:

Josh Welburn – Engineering Project Manager

THIS PAGE IS INTENTIONALLY LEFT BLANK

DISCLAIMER

This report is confidential to the client named on the front cover.

This report may be stored, transmitted, or reproduced in full by the named client, however if the report is to be placed in the public domain or used for publicity / promotional purposes please inform a director of Enertek International Ltd.

The report must not be reproduced in part, edited, abridged or any extracts used for any purpose whatsoever without written permission from a director of Enertek International Ltd.

The client remains responsible for any data supplied by the client for use in this report. If this data could affect the test results this will be noted in the report.

Any test results contained in this report apply only to the specific sample(s) tested as described in the report.

This report does not imply or indicate any element of commercial approval, recommendation, or promotion by Enertek International Ltd.

CONTENTS

1	BRIE	IEF6							
2	DEFI	EFINITIONS							
3	TEST	OBJECT	8						
	3.1	Appliance Details	8						
	3.2	Appliance Design Pressures	8						
	3.3	Appliance Design Temperatures	8						
4	TEST	METHOD	9						
	4.1	Installation of Appliance	9						
	4.2	Test Regime	9						
	4.3	Measurement & Uncertainties	9						
5	TEST	RESULTS	14						
	5.1	Test 0 – Pressure Test	14						
	5.2	Test 1a to 1f – Space Heating 1-4 kW at 70 and 60°C	14						
	5.3	Test 2a – DHW Dynamic Tapping at 70 °C	15						
	5.4	Test 2b – DHW Dynamic Tapping at 60 °C	15						
	5.5	Test 3a – Low Flow DHW at 70 °C	15						
	5.6	Test 3b – Low Flow DHW at 60 °C	15						
	5.7	Test 4a – Keep-Warm at 70 °C	16						
	5.8	Test 4b – Keep-Warm at 60 °C	16						
	5.9	Test 5a – DHW Response Time at 70 °C	17						
	5.10	Test 5b – DHW Response Time at 60 °C	17						
	5.11	Overall Scaling Risk Assessment	18						
	5.12	VWART Calculations	19						
6	CON	CLUSIONS	20						
7	APPI	ENDIX A	21						
	7.1	Key Metric Plots	21						
	7.2	Key Metric and VWART Summary	36						
8	APPI	ENDIX B	39						
	8.1	Appliance Documentation	39						
	8.2	Appliance Photographs	40						
	8.3	Calibrations and Uncertainties	43						

LIST OF FIGURES

Figure 4.1 – EIL's HIU Test Rig Schematic	10
Figure 7.1 - Test 1a – Space Heating 1 kW at 70 °C	22
Figure 7.2 - Test 1b – Space Heating 2 kW at 70 °C	23
Figure 7.3 - Test 1c – Space Heating 4 kW at 70 °C	24
Figure 7.4 - Test 1d – Space Heating 1 kW at 60 °C	25
Figure 7.5 - Test 1e – Space Heating 2 kW at 60 °C	26
Figure 7.6 - Test 1f – Space Heating 4 kW at 60 °C	27
Figure 7.7 - Test 2a – DHW only at 70 °C	28
Figure 7.8 - Test 2b – DHW only at 60 °C	29
Figure 7.9 - Test 3a – Low Flow DHW at 70 °C	
Figure 7.10 - Test 3b – Low Flow DHW at 60 °C	31
Figure 7.11 - Test 4a – Keep-Warm at 70 °C	32
Figure 7.12 - Test 4b – Keep-Warm at 60 °C	33
Figure 7.13 - Test 5a – DHW Response Time at 70 °C	34
Figure 7.14 - Test 5b – DHW Response Time at 60 °C	35
Figure 8.1 – Photograph of Appliance [Case Fitted]	40
Figure 8.2 – Photograph of Appliance [Case Removed]	41
Figure 8.3 – Appliance Data Label	42

LIST OF TABLES

Table 2.1 – Definitions and Abbreviations	7
Table 3.1 – Appliance Details	8
Table 3.2 – Appliance Design Pressures	8
Table 3.3 – Appliance Design Temperatures	8
Table 4.1 – Setup of Tests (Based on BESA Test Regime, Table 1: Test Schedule)	11
Table 4.2 – Test Reporting, (Adapted from BESA Test Regime, Table 5)	12
Table 5.1 - Test Results for Space Heating Tests 1a to 1f	14
Table 5.2 - Overall Scaling Risk Assessment	
Table 5.3 – High Temperature VWART Calculations	19
Table 5.4 – Low Temperature VWART Calculations	19
Table 7.1 - Key Metrics of High Temperature Package	
Table 7.2 - Key Metrics of Low Temperature Package	
Table 8.1 – Documentation Supplied	
Table 8.2 - EIL Equipment Calibration and Uncertainties	43

1 BRIEF

- 1.1.1 Enertek international Limited (EIL), were contracted to receive, install, and commission a production sample, of the LogoEco G2 Dual M-Line.
- 1.1.2 To carry out the work involved to evaluate the performance of Domestic Hot Water (DHW) and Space Heating (SH) in accordance with the BESA UK HIU Test regime Technical Specification, Rev-009 October 2018, a publicly available online test regime. This is here-on referred to as the Test Regime throughout this document.
- 1.1.3 To provide a report detailing the tests carried out and generated results in accordance with the Test Regime criteria, including calculations for Volume Weighted Average Return Temperatures (VWART).

2 **DEFINITIONS**

2.1.1 The following definitions and abbreviations which have been used within this report can be found in table 2.1 below.

Symbol	Description	Unit
P ₁	Power, Primary Side	kW
P ₂	Power, Space Heating Side	kW
P ₃	Power, Domestic Hot Water	kW
t ₁₁	Temperature, Primary Side Supply Connection	°C
t ₁₂	Temperature, Primary Side Return Connection	°C
t ₂₁	Temperature, Space Heating Side Return Connection	°C
t ₂₂	Temperature, Space Heating System Supply Connection	°C
t ₃₁	Temperature, Cold Water Supply	°C
t ₃₂	Temperature, Domestic Hot Water Output from HIU	°C
q ₁	Volume Flow, Primary Side	L/s
q ₂	Volume Flow, Space Heating Side	L/s
q ₃	Volume Flow, Domestic Hot Water	L/s
Δp_1	Primary Pressure Drop Across Entire HIU Unit	kPa
Δp ₂	Pressure Drop, Space Heating System Across HIU	kPa
Δp_3	Pressure Drop, Domestic Hot Water Across HIU	kPa
VWART _{DHW}	DHW Volume Weighted Return Temperature	°C
VWART _{SH}	Space Heating Volume Weighted Return Temperature	°C
VWART _{KWH}	Keep Warm Volume Weighted Return Temperature	°C
VWART _{HEAT}	Annual Volume Weighted Return Temperature for Heating Period	°C
VWART _{NONHEAT}	Annual Volume Weighed Return Temperature for Non-Heating	°C
VWART _{HIU}	Total Annual Volume Weighted Return Temperature	°C
DHW	Domestic Hot Water	-
HIU	Heat Interface Unit	-
SH	Space Heating	-
TMV	Thermostatic Mixing Valve	-
EIL	Enertek International Limited	-

Table 2.1 – Definitions and Abbreviations

3 TEST OBJECT

3.1 Appliance Details

3.1.1 Details of the HIU LogoEco G2 Dual M-Line appliance are given in Table 3.1. Photograph of the installed appliance is given in Figure 8.2.

Table 3.1 – Appliance Details

Item	Description		
Manufacturer	Aalberts Hydronic Flow Control		
Model	LogoEco G2 Dual M-Line		
Serial Number	M10101.026		
Year of Manufacture	2022		
DHW Priority	Yes		

3.2 Appliance Design Pressures

3.2.1 The maximum design pressures of the LogoEco G2 Dual M-Line appliance for the primary side and the secondary side for both Space Heating and DHW are given in Table 3.2.

Table 3.2 – Appliance Design Pressures

Item	Value	Unit
Primary Side	16	Bar
Secondary Side Space Heating	10	Bar
Secondary Side DHW	6	Bar

3.3 Appliance Design Temperatures

3.3.1 The maximum design temperatures of the LogoEco G2 Dual M-Line appliance for the primary side and the secondary side for both Space Heating and DHW are given in Table 3.3

Table 3.3 – Appliance Design Temperatures

Item	Value	Unit
Primary Side	90	°C
Secondary Side Space Heating	60	°C
Secondary Side DHW	55	°C

4 TEST METHOD

4.1 Installation of Appliance

4.1.1 The appliance was installed and commissioned (as received) and as defined in the product literature provided. Testing was carried out without further adjustment other than disabling the internal space heating pump and adjusting the setting of the SH and DHW set points through the user interface on the HIU controller to suit the conditions of the HIU test rig. The HIU rig schematic is given in Figure 4.1.

4.2 Test Regime

- 4.2.1 The testing described in this report was carried out in accordance with the BESA test regime. The Test Regime outlines a series of static and dynamic tests to determine the performance of a HIU's DHW and SH functions. The Regime outlines the test method including the reporting of the results, the performance requirements and the VWART calculations.
- 4.2.2 The setup of the BESA tests is reproduced in Table 4.1. The basis of reporting the performance of the HIU from the BESA Test Regime is reproduced in Table 4.2.
- 4.2.3 The Test Regime specifies the testing of two different test temperature packages. The first is the high temperature package, with a district primary supply of 70 °C and the second is the 'low temperature' package, with a district primary supply temperature of 60 °C.
- 1.1.1 As the LogoEco G2 Dual M-Line is suitable for both high and low temperature operation, both test packages were carried out and results recorded within this report.

4.3 Measurement & Uncertainties

- 4.3.1 All measurements and uncertainties adhere to the requirements stipulated in the BESA Test Regime. All measurements were sampled at a rate of 1 Hz for all tests.
- 4.3.2 The BESA uncertainties of measurement requirements are as follows: Differential Pressure, ± 1 kPa; Temperature, ± 0.1 °C; Volume Flow, ± 1.5 %. Note: the time constant for the temperature sensors is less than 1.5 s.
- 4.3.3 EIL's reported uncertainty is based on a standard uncertainty by a coverage factor K=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements. The EIL equipment list and uncertainties are given in Table 8.2, Appendix B.

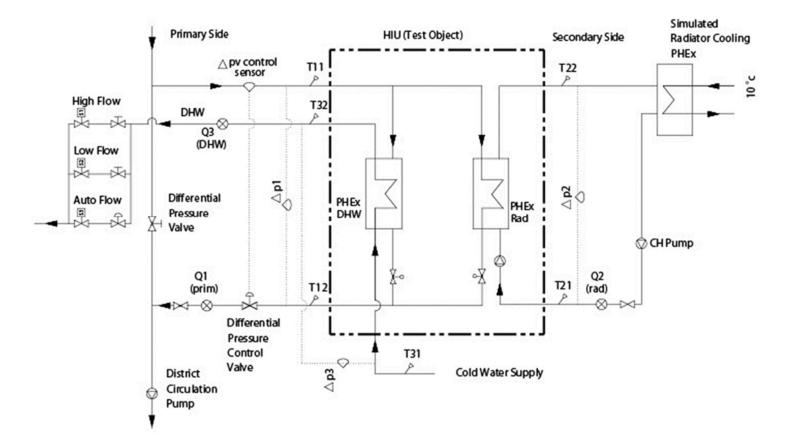


Figure 4.1 – EIL's HIU Test Rig Schematic

Table 4.1 – Setup of Tests (Based on BESA Test Regime, Table 1: Test Schedule)

		District Circuit			Domestic Hot Water			Space Heating		
		Static Pressure	Differential Pressure	Flow Temperature	Temperature Set Point	Flow Rate	Heat Load	Flow Temperature	Return Temperature	Heat Load
Symb	ol	[p1]	[∆p₁]	[t11]	[t ₃₂]	[q₃]	[P₃]	[t22]	[t ₂₁]	[P ₂]
Units		[kPa]	[kPa]	[°C]	[°C]	[Ls ⁻¹]	[kW]	[°C]	[°C]	[kW]
Statio	c Tests									
0a	District Pressure Test	1.43 X Claim ed Value	-	-	-	-	-	-	-	-
1a	1kW Space Heating	3.0	0.5	70	-	-	-	60	40	1
1b	2kW Space Heating	3.0	0.5	70	-	-	-	60	40	2
1c	4kW Space Heating	3.0	0.5	70	-	-	-	60	40	4
1d	1kW Space Heating	3.0	0.5	60	-	-	-	45	35	1
1e	2kW Space Heating	3.0	0.5	60	-	-	-	45	35	2
1f	4kW Space Heating	3.0	0.5	60	-	-	-	45	35	4
Dyna	mic Tests									
2a	Dynamic Tapping	3.0	0.5	70	55	See	See	-	-	-
2b	Dynamic Tapping	3.0	0.5	60	50	Test Profi le	Test Profile	-	-	-
За	Low Flow	3.0	0.5	70	55	0.02	Record Value	-	-	-
3b	Low Flow	3.0	0.5	60	50	0.02	Record Value	-	-	-
4a	Keep-Warm	3.0	0.5	70	55	0.00	0	-	-	-
4b	Keep-Warm	3.0	0.5	60	50	0.00	0	-	-	-
5a	DHW Response	3.0	0.5	70	55	0.13	Record Value	-	-	-
5b	DHW Response	3.0	0.5	60	50	0.13	Record Value	-	-	-

Tes	t Designation	Reporting
0	District Pressure Test	Pass/Fail as to whether HIU manages pressure test without leaks or damage.
1a	Space Heating 1 kW, 60/40 °C Secondary	t_{11} – Primary flow temperature. t_{12} – Primary return temperature.
1b	Space Heating 2 kW, 60/40 °C Secondary	Plot of key metrics over duration of test. Note: Outputs used as input data to 'High Temperature' Space Heating Volume
1c	Space Heating 4 kW, 60/40 °C Secondary	Weighted Average Return Temperature calculation.
1d	Space Heating 1 kW, 45/35 ° Secondary	t_{11} – Primary flow temperature. t_{12} – Primary return temperature.
1e	Space Heating 2 kW, 45/35 °C Secondary	Plot of key metrics over duration of test.
1f	Space Heating 4 kW, 45/35 °C Secondary	Note : Outputs used as input data to 'Low Temperature' Space Heating Volume Weighted Average Return Temperature calculation.
2a	DHW only, DH 70 °C Flow, 55 °C DHW	Pass/Fail on DHW (at t_{32}) exceeding 65.0 °C (to 1 decimal point) for more than 10 consecutive seconds. State the maximum and minimum DHW temperatures over the period of the test when there is a DHW flow. Assessment of scaling risk as per the criteria detailed in 2.26. Note: Outputs used as input data to 'High Temperature' Space Heating Volume Weighted Average Return Temperature calculation. Plot t_{32} , t_{31} , q_3 , t_{12} , q_1
2b	DHW only, DH 60 °C Flow, 50 °C DHW	State the maximum and minimum DHW temperatures over the period of the test when there is a DHW flow. Note: Outputs used as input data to 'Low Temperature' Domestic Hot Water Volume Weighted Average Return Temperature calculation. Plot q_1 , q_3 , dp_1 , dp_3
За	Low Flow DHW, DH 70 °C Flow, 55 °C DHW	Pass/Fail on DHW (at t_{32}) exceeding 65.0 °C (1 decimal place) for more than 10 consecutive seconds. Comment on ability to deliver DHW at low flow based on DHW temperature reaching at least 45.0 °C (1 decimal place) at the end of the 180 second period of low flow DHW. Comment on the ability to deliver stable DHW flow temperature (at t_{32}), defined as ability to maintain 55.0 +/- 3.0 °C (1 decimal place) during the last 60 seconds of the test. Maximum temperature achieved and +/-°C variance around 55.0 °C (1 decimal place) to be stated. Plot of key metrics for 60 seconds of 0.13 l/s flow and the subsequent 180 seconds of 0.02 l/s DHW flow. Assessment of scaling risk as per criteria detailed in 2.26.
3b	Low Flow DHW, DH 60 °C Flow, 50 °C DHW	Comment on the ability to deliver DHW at low flow rate based on DHW temperature reaching at least 45 °C (1 decimal place) at the end of the 180 second period of low flow DHW. Comment on the ability to deliver stable DHW flow temperature (at t_{32}), defined as ability to maintain 50.0 +/-3°C (1 decimal place) to be stated. Maximum temperature achieved and +/-°C variance around 50.0°C (1 decimal place) to be stated. Plot of key metrics for 60 seconds of 0.13 l/s flow and the subsequent 180 seconds of 0.02 l/s DHW flow.

Table 4.2 – Test Reporting, (Adapted from BESA Test Regime, Table 5)

Tes	t Designation	Reporting
4a	Keep-Warm, DH 70 °C Flow, 55 °C DHW	Assessment of whether valid Keep-Warm operation, based on 5a response time criteria: Pass/Fail. Comment on HIU keep-warm controls options. Assessment of scaling risk based on duration of temperatures in excess of 55.0 °C (1 decimal place). State average heat load for the duration of the test. State the average primary flow rate for the duration of the test. Note: Outputs used as input data to 'High Temperature' Keep-Warm Volume Weighted Average Return Temperature calculation. Plot of key metrics over duration of test.
4b	Keep-Warm, DH 60 °C Flow, 50 °C DHW	Assessment of whether valid Keep-Warm operation, based on 5a response time criteria: Pass/Fail. Observation on the operation of the HIU during Keep-Warm. Comment on HIU Keep- Warm controls options. Assessment of scaling risk based on extent and duration of temperatures in excess of 55.0 °C (1 decimal place). State average heat load for the duration of the test. State the average primary flowrate for the duration of the test. Note: Outputs used as input data to 'Low Temperature' Keep-Warm Volume Weighted Average Return Temperature calculation. Plot of key metrics over duration of test.
5a	DHW Response Time, DH 70 °C Flow, 55 °C DHW	Pass/Fail on DHW (at t_{32}) exceeding 65.0 °C (1 decimal place) for more than 10 consecutive seconds. State time to achieve 45.0 °C (1 decimal place) and not subsequently drop below 42.0 °C (1 decimal place). Plot t_{32} , t_{31} , t_{12} , q_1 over duration of test.
5b	DHW Response Time, DH 60 °C Flow, 50 °C DHW	State time to achieve a DHW temperature 45.0 °C (1 decimal place) and not subsequently drop below 42.0 °C (1 decimal place). Comment on stability of DHW temperature. Plot t_{32} , t_{31} , t_{12} , q_1 over duration of test.

5 TEST RESULTS

5.1 Test 0 – Pressure Test

- 5.1.1 The appliance has passed the requirements of the static pressure test, Test 0 of the BESA Test Regime as:
- 5.1.2 There was No damage observed during the static pressure test, with the primary flow pressurised to 22.88 bar (1.43 times the rated value), and,
- 5.1.3 There were No leaks observed during the static pressure test, with the primary flow pressurised to 22.88 bar (1.43 times the rated value).

5.2 Test 1a to 1f – Space Heating 1-4 kW at 70 and 60°C

5.2.1 The plot of the key metrics of Tests 1a-1f for the space heating 1 - 4 kW at both 70 and 60 °C are displayed in Figure 7.1 to Figure 7.6 respectively. See Table 5.1 for summarised test results including the average primary return temperature, t_{12} .

			Primar	У		Secondary				
Test No & Description	Flow Temperature	Return Temperature	Flow Rate	Differential Pressure	Heat Load	Return Temperature	Flow Temperature	Flow Rate	Differential Pressure	Heat Load
	[t11]	[t12]	[q1]	[∆p₁]	[P ₁]	[t21]	[t22]	[q2]	[∆p₂]	[P2]
	[°C]	[°C]	[Ls ⁻¹]	[kPa]	[W]	[°C]	[°C]	[Ls⁻]	[kPa]	[W]
1a - 1 kW Space Heating (DH 70 °C flow)	69.5	39.2	0.011	50.8	1328	40.1	59.9	0.013	3.0	1099
1b - 2 kW Space Heating (DH 70 °C flow)	69.6	39.6	0.017	51.6	2174	40.1	60.0	0.024	2.5	1969
1c - 4 kW Space Heating (DH 70 °C flow)	70.0	39.8	0.032	50.8	4087	40.3	59.5	0.048	1.0	3841
1d - Space Heating 1 kW (DH 60 °C flow)	59.5	34.1	0.010	54.9	1052	34.6	45.1	0.022	2.6	948
1e - Space Heating 2 kW (DH 60 °C flow)	59.6	34.0	0.021	69.6	2251	34.6	45.4	0.047	1.1	2114
1f - Space Heating 4 kW (DH 60 °C flow)	60.0	34.6	0.040	50.2	4250	35.1	45.3	0.095	3.3	4068

Table 5.1 - Test Results for Space Heating Tests 1a to 1f

5.3 Test 2a – DHW Dynamic Tapping at 70 °C

- 5.3.1 The appliance has passed the requirements of the DHW only at 70 °C, Test 2a of the BESA Test Regime as:
- 5.3.2 The domestic hot water output temperature, t₃₂ did not exceed 65 °C for more than 10 seconds.
- 5.3.3 The maximum and minimum temperatures of t_{32} were 58.17 °C and 49.57 °C respectively.
- 5.3.4 The plot of the key metrics of the duration of Test 2a is displayed in Figure 7.7, Appendix A.

5.4 Test 2b – DHW Dynamic Tapping at 60 °C

- 5.4.1 The maximum and minimum temperatures of t_{32} were 51.85 °C and 47.20 °C respectively.
- 5.4.2 The plot of the key metrics of the duration of Test 2b is displayed in Figure 7.8, Appendix A.

5.5 Test 3a – Low Flow DHW at 70 °C

- 5.5.1 The appliance has passed the requirements of the Low Flow at 70 °C, Test 3a of the BESA Test Regime as:
- 5.5.2 The domestic hot water output temperature, t_{32} did not exceed 65 °C for more than 10 seconds.
- 5.5.3 The appliance did maintain the DHW output temperature, t_{32} at 55 ± 3 °C during the last 60 seconds of the test.
- 5.5.4 The maximum and minimum temperatures of t_{32} were 59.7 °C and 54.9 °C respectively.
- 5.5.5 The plot of the key metrics of the duration of Test 3a is displayed in Figure 7.9, Appendix A.

5.6 Test 3b – Low Flow DHW at 60 °C

- 5.6.1 The appliance did maintain stable flow temperatures during Low Flow at 60 °C, Test 3b of the BESA Test Regime.
- 5.6.2 The maximum and minimum temperatures of t_{32} during test 3b were 51.3 °C and 47.3 °C respectively.
- 5.6.3 The plot of the key metrics of the duration of Test 3b is displayed in Figure 7.10, Appendix A.

5.7 Test 4a – Keep-Warm at 70 °C

- 5.7.1 The appliance has passed the requirements of the Keep-Warm at 70 °C, Test 4a of the BESA Test Regime as:
- 5.7.2 This is a valid Keep-Warm operation based on 5a response time criteria, see 5.9.3.
- 5.7.3 The appliance is performing Keep-Warm cycling as the primary flow temperature, t_{11} varies by more than ± 3 °C during the final 3 hours of the test. Please see BESA HIU standard technical note TN-018 Version 1 for a more detailed definition of cyclical data.
- 5.7.4 The average heat load on the primary side P_1 is 26 W.
- 5.7.5 The average electrical consumption was 2.95 W.
- 5.7.6 The average primary flow q_1 over the 8 hours test was 2.3 l/hr.
- 5.7.7 The Keep-Warm control was set to on.
- 5.7.8 The plot of the key metrics of the duration of Test 4a is displayed in Figure 7.13, Appendix A.

5.8 Test 4b – Keep-Warm at 60 °C

- 5.8.1 The appliance has passed the requirements of the Keep-warm at 60 °C, Test 4b of the BESA Test Regime as:
- 5.8.2 This is a valid Keep-Warm operation based on 5b response time criteria, see 5.10.1.
- 5.8.3 The appliance is performing Keep-Warm cycling as the primary flow temperature, t_{11} varies by more than ± 3 °C during the final 3 hours of the test. Please see BESA HIU standard technical note TN-018 Version 1 for a more detailed definition of cyclical data.
- 5.8.4 The average heat load on the primary side P_1 is 30 W.
- 5.8.5 The average primary flow q_1 over the 8 hours test was 3.1 l/hr.
- 5.8.6 The average electrical consumption was 2.02 W.
- 5.8.7 The Keep-Warm control was set to on.
- 5.8.8 The plot of the key metrics of the duration of Test 4b is displayed in Figure 7.14, Appendix A.

5.9 Test 5a – DHW Response Time at 70 °C

- 5.9.1 The appliance has passed the requirements of DHW Response Time at 70 °C, Test 5a of the BESA Test Regime as:
- 5.9.2 The domestic hot water output temperature, t₃₂ did not exceed 65 °C for more than 10 seconds.
- 5.9.3 The DHW response time for t_{32} to reach 45 °C was 14 seconds. As the appliance maintained temperature above 42 °C and within 15 seconds this is a valid keep warm and a pass.
- 5.9.4 The plot of the key metrics of the duration of Test 5a is displayed in Figure 7.15, Appendix A.

5.10 Test 5b – DHW Response Time at 60 °C

- 5.10.1 The DHW response time for t_{32} to reach 45 °C and not subsequently drop below 42 °C was 15 seconds. As the appliance maintained temperature above 42 °C and within 15 seconds this is a valid keep warm and a pass.
- 5.10.2 The plot of the key metrics of the duration of Test 5b is displayed in Figure 7.16, Appendix A.

5.11 Overall Scaling Risk Assessment

5.11.1 If any of the below factors occur, then the risk of scaling of the DHW plate in hard water areas increases.

Table 5.2 - Overall Scaling Risk Assessment

HIU has a TMV or TRV on the output of the DHW plate heat exchanger	No				
Test Designation	2a	За			
t ₃₂ above 60°C for more than 5 seconds	No	No			
t_{12} exceeds 55°C at any point of the test	No	No			
Test Designation	4a	4b			
t ₁₂ exceeds 50°C at any time	No	No			

5.12 VWART Calculations

5.12.1 The Volume Weighted Average Return Temperatures (VWART) have been calculated as stipulated in the BESA UK HIU Test Regime document. The calculated VWART values for both the high temperature and low temperature tests described in this report are given below in Table 5.3 and Table 5.4 respectively.

Table 5.3 – High Temperature VWART Calculations

Description	Symbol	Value	Unit
Annual Heating Period Percentage	SHprop	7.2	%
Annual Non-Heating Period Percentage	NSHprop	92.8	%
Space Heating Volume Weighted Return Temperature	VWART _{SH}	40	°C
DHW Volume Weighted Return Temperature	VWARTDHW	14	°C
Keep Warm Volume Weighed Return Temperature	VWART _{KWM}	32	°C
Annual Volume Weighted Return Temperature for Heating Period	VWARTHEAT	39	°C
Annual Volume Weighted Return Temperature for Non-Heating	VWARTNONHEAT	22	°C
Total Annual Volume Weighted Return Temperature		23	°C

Table 5.4 – Low Temperature VWART Calculations

Description	Symbol	Value	Unit
Annual Heating Period Percentage	SHprop	7.0	%
Annual Non-Heating Period Percentage	NSHprop	93.0	%
Space Heating Volume Weighted Return Temperature	VWARTsH	34	°C
DHW Volume Weighted Return Temperature	VWARTDHW	15	°C
Keep Warm Volume Weighed Return Temperature	VWART _{KWM}	33	°C
Annual Volume Weighted Return Temperature for Heating Period	VWARTHEAT	34	°C
Annual Volume Weighted Return Temperature for Non-Heating	VWART _{NONHEAT}	23	°C
Total Annual Volume Weighted Return Temperature		24	°C

6 CONCLUSIONS

6.1.1 The appliance has passed the performance requirements of the BESA HIU Test Regime.

7 APPENDIX A

7.1 Key Metric Plots

7.1.1 The graphical plots of the key metrics of the tests described in this report are given in this section.

GRAPHICAL PLOTS START ON NEXT PAGE

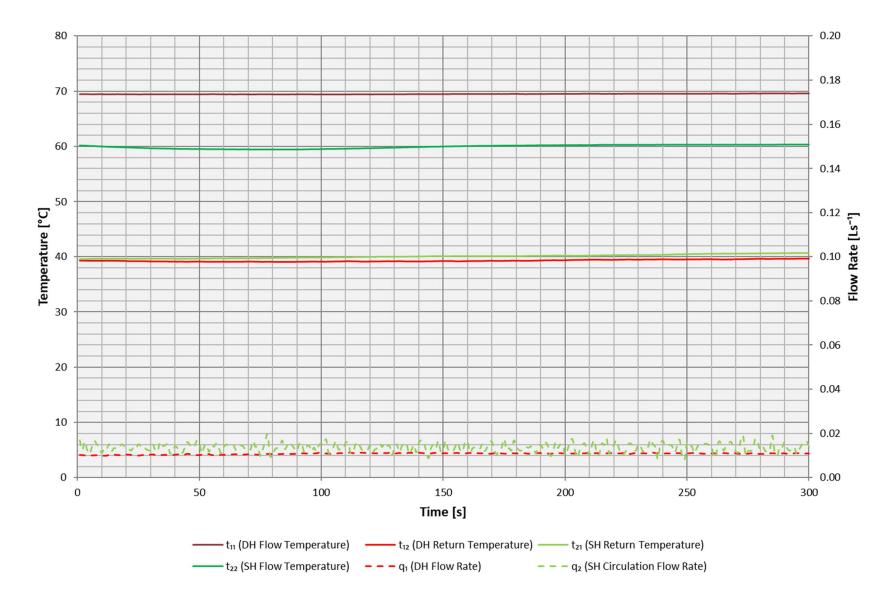


Figure 7.1 - Test 1a – Space Heating 1 kW at 70 °C

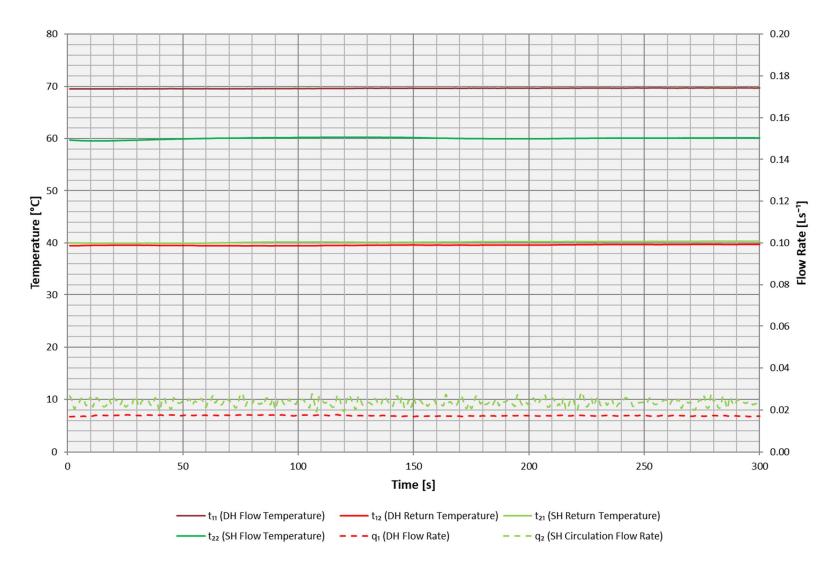


Figure 7.2 - Test 1b – Space Heating 2 kW at 70 °C

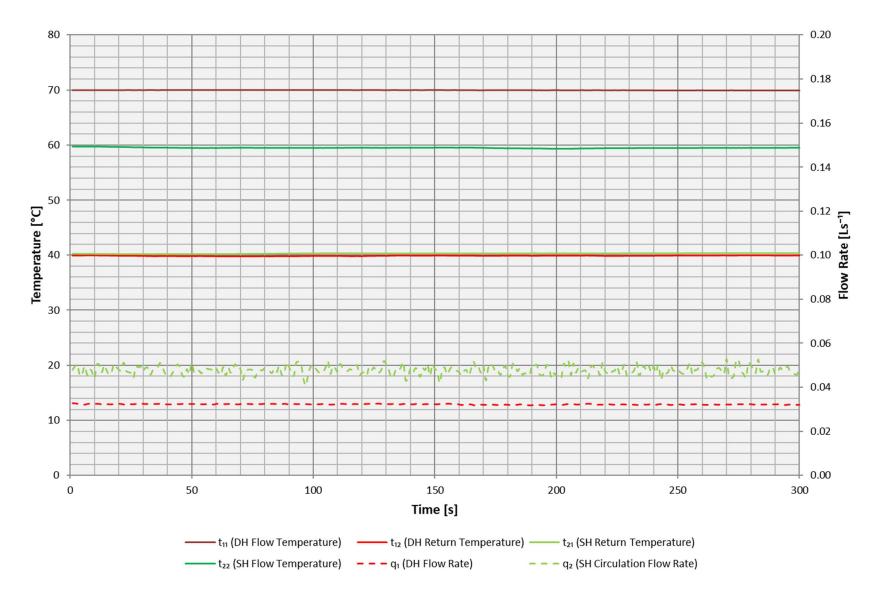


Figure 7.3 - Test 1c – Space Heating 4 kW at 70 °C

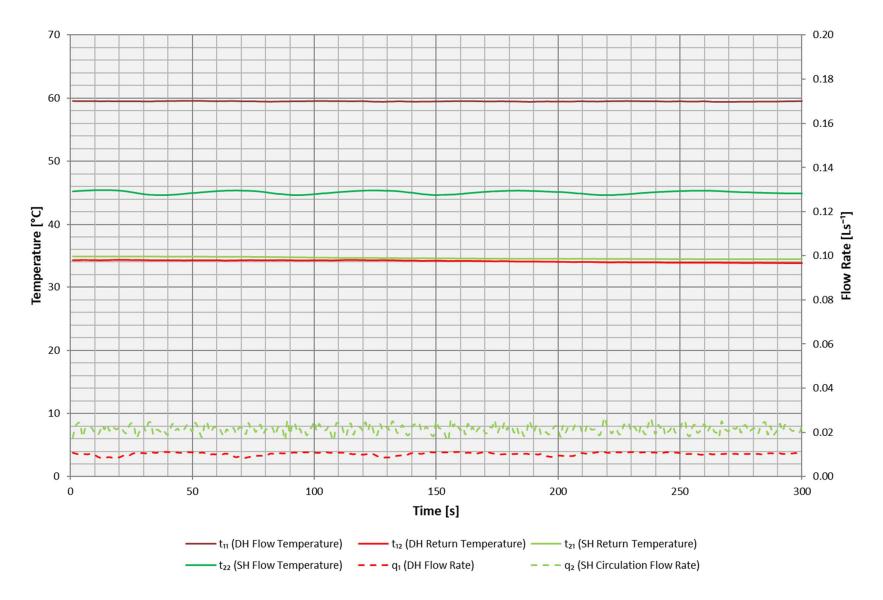


Figure 7.4 - Test 1d – Space Heating 1 kW at 60 °C

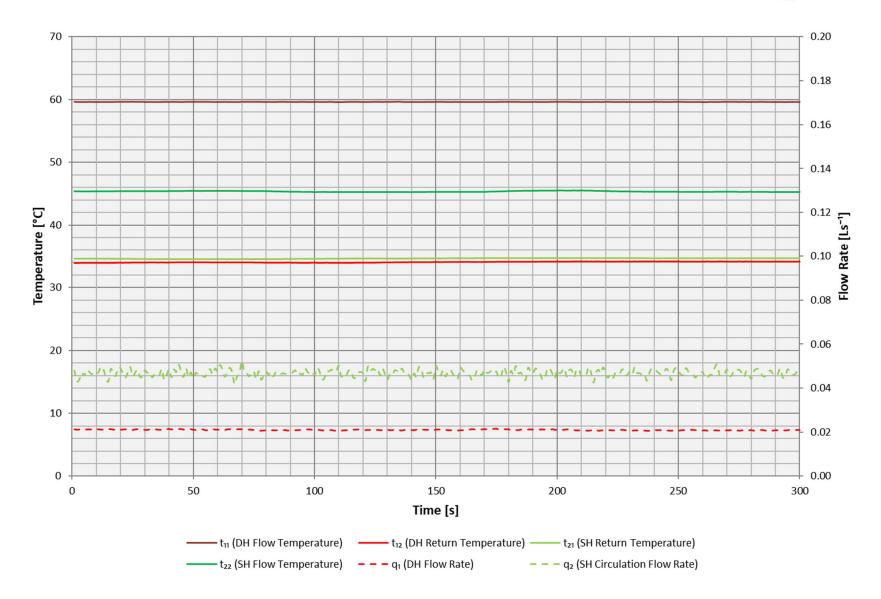


Figure 7.5 - Test 1e – Space Heating 2 kW at 60 °C

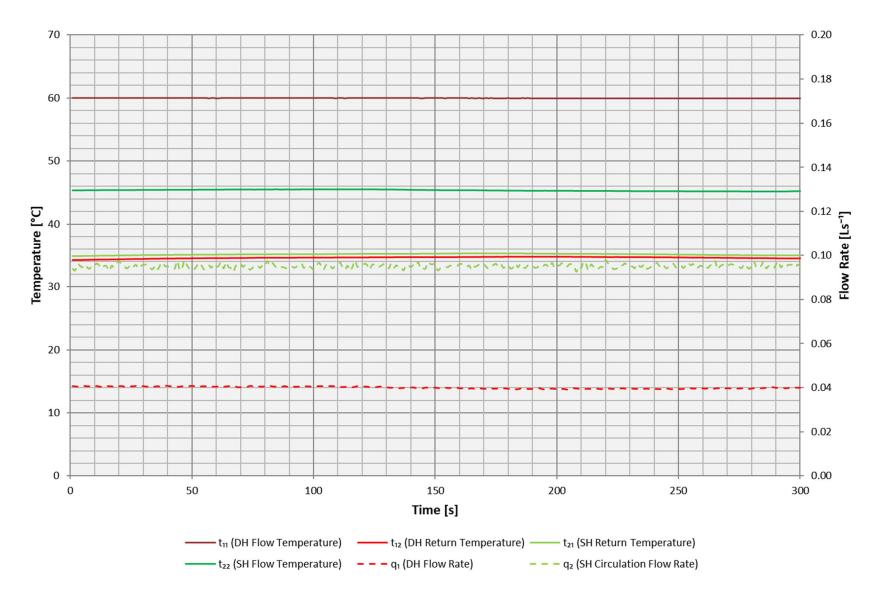


Figure 7.6 - Test 1f – Space Heating 4 kW at 60 °C

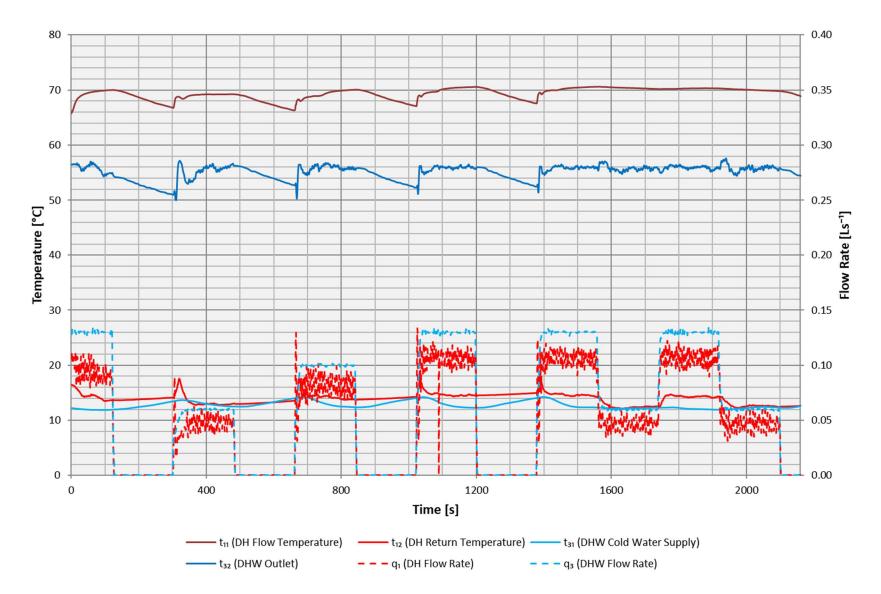


Figure 7.7 - Test 2a – DHW only at 70 °C

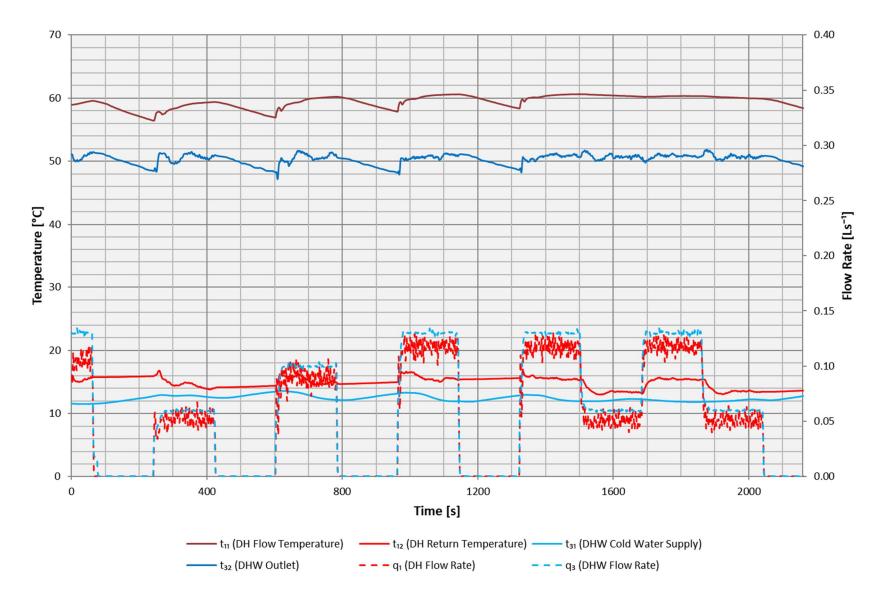


Figure 7.8 - Test 2b – DHW only at 60 °C

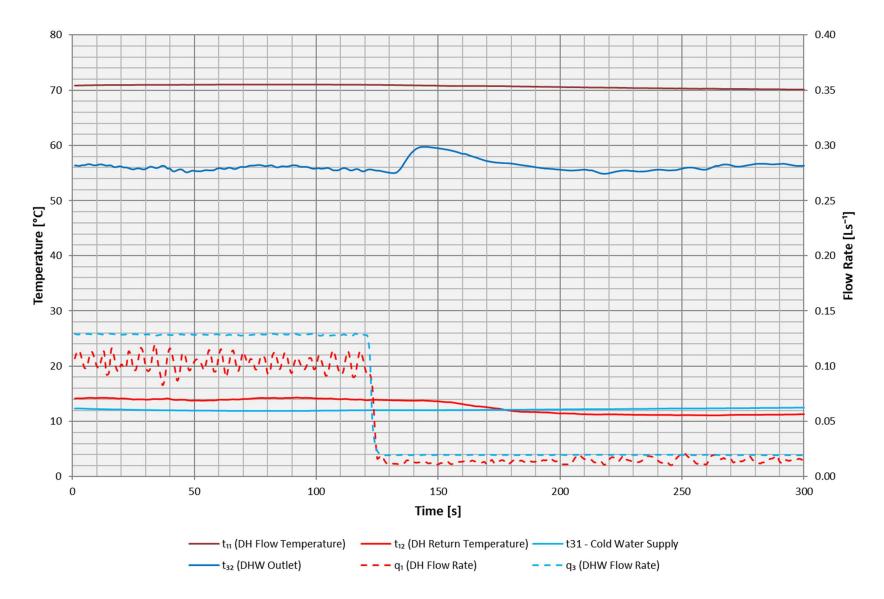


Figure 7.9 - Test 3a – Low Flow DHW at 70 °C

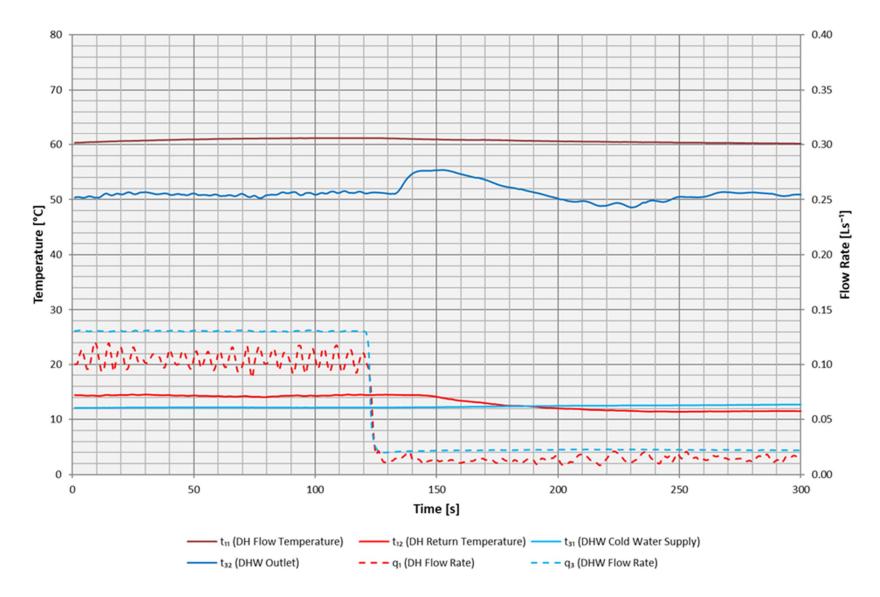


Figure 7.10 - Test 3b – Low Flow DHW at 60 °C

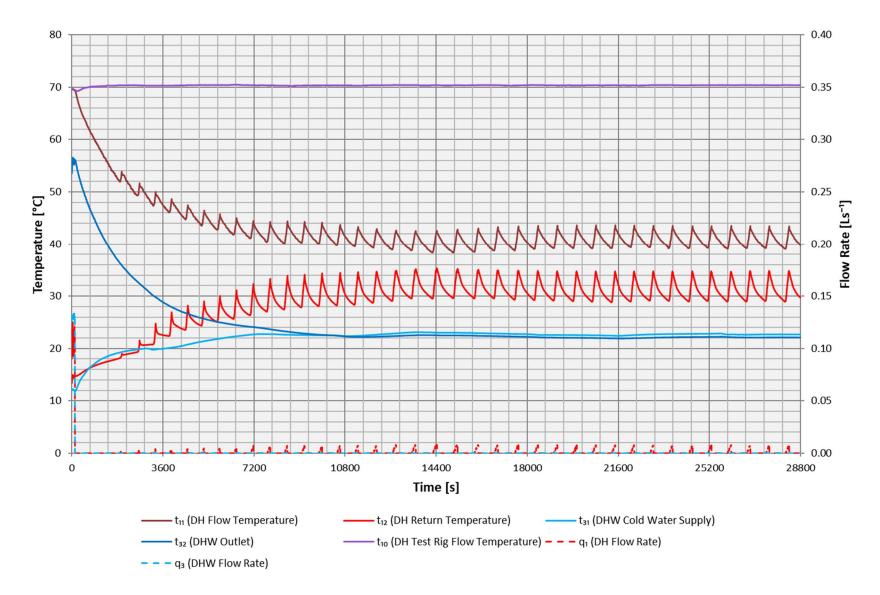


Figure 7.11 - Test 4a – Keep-Warm at 70 °C

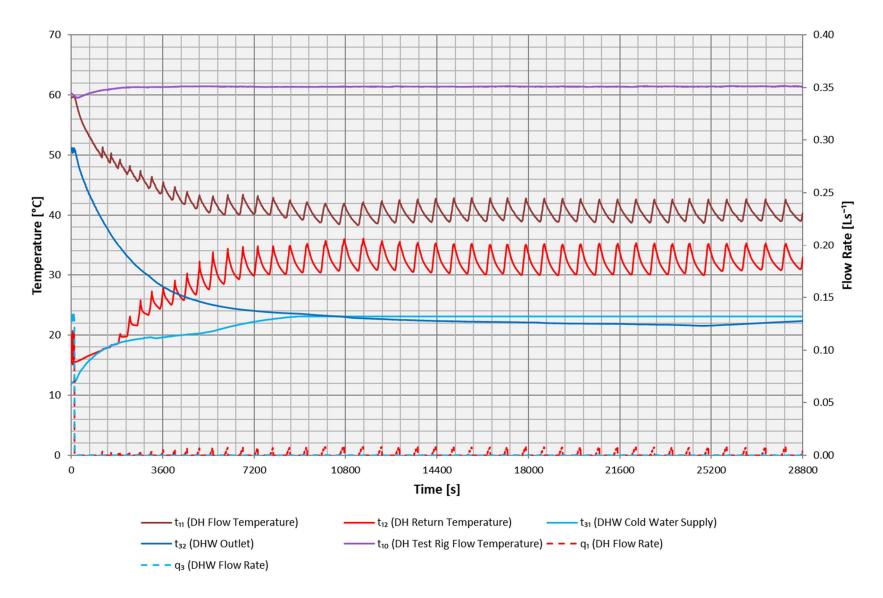


Figure 7.12 - Test 4b – Keep-Warm at 60 °C

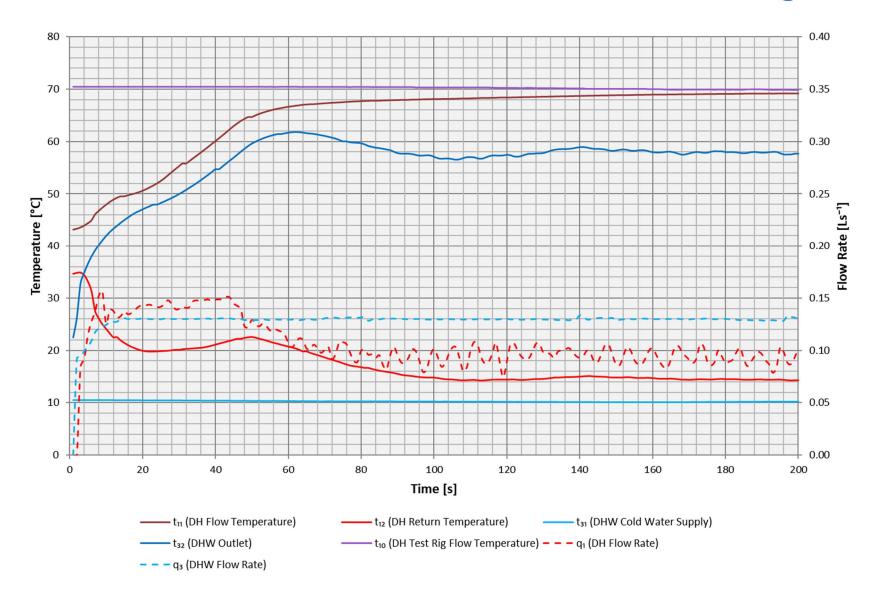


Figure 7.13 - Test 5a – DHW Response Time at 70 °C

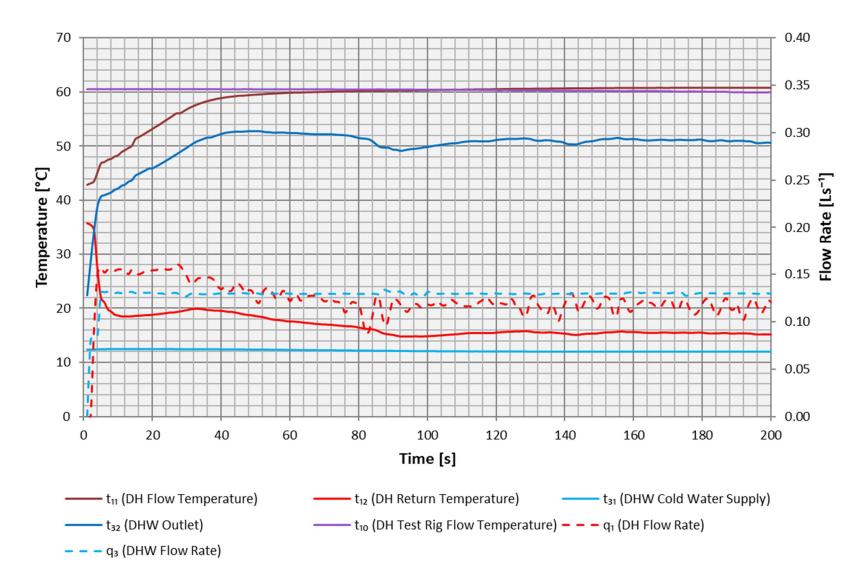


Figure 7.14 - Test 5b - DHW Response Time at 60 °C

7.2 Key Metric and VWART Summary

7.2.1 The summary tables of the key metrics and VWARTs of the tests described in this report are given in this section.

SUMMARY TABLES START ON NEXT PAGE

VWART Calculation with Keep Warm

Test carried out by Enertek International for High Temperature BESA Tests						
Manufacturer: Aalberts Hydronic Flow Control						
Model:	LogoEco G2 Dual M-Line					
Serial number:	M10101.026					
Calculation performed by S.Broxham of Enertek on:	28/08/2022					

Primary Flow Temperature:	70°C
DHW Setpoint:	55°C
Space Heating Temperature:	60/40°C

	VWART (°C)	Volume (m3)
DHW	14	24.1
Standby	32	18.1
Space Heating	40	45.4

	VWART with keep warm active				
Period	VWART (°C)	% Time			
No Heating	22	93%			
Heating	39	7%			
Overall	23				

		Test Results							
		Power (p1)	Primary flow	VWART	Energy Used	Annual Operation	Volume	Events	Average duration
		[W]	[m³/hr]	[°C]	[kWh]	[Hours]	[m³]	[Per Year]	[Seconds]
1kW Space Heating	1a	1336	0.039	39	115	85.8	3.36	-	
2kW Space Heating	1b	2174	0.062	40	869	399.7	24.90	-	-
4kW Space Heating	1c	4087	0.117	40	601	147.1	17.14	-	-
DHW Low Flow Rate	2a	10153	0.165	13	763	71.8	11.81	-	-
DHW Medium Flow Rate	2a	17252	0.288	14	316	17.2	4.96	-	-
DHW High Flow Rate	2a	22349	0.369	15	470	19.9	7.33	-	-
DHW Post Low Flow Rate	2a	-	0.000	0	-	-	0.00	10000	30
DHW Post Medium Flow Rate	2a	-	0.000	0	-	-	0.00	660	70
DHW Post High Flow Rate	2a	-	0.000	0	-	-	0.00	300	145
DHW Keep Warm Standby	4a	-	0.002	32	2.	8018.5	18.14	-	12

Table 7.1 - Key Metrics of High Temperature Package

Calculation performed by S.Broxham of Enertek on:

VWART Calculation with Keep Warm

Test carried out by Enertek International	Primary Flow Temperature:	60°C	
Manufacturer:	Aalberts Hydronic Flow Control	DHW Setpoint:	50°C
Model:	LogoEco G2 Dual M-Line	Space Heating Temperature:	45/35°C
Serial number:	M10101.026		

28/08/2022

	VWART (°C)	Volume (m3)
DHW	15	30.0
Standby	33	24.5
Space Heating	34	52.0

	VWART with keep warm active				
Period	VWART (°C)	% Time			
No Heating	23	93%			
Heating	34	7%			
Overall	24				

		Test Results							
		Power (p1)	Primary flow	VWART	Energy Used	Annual Operation	Volume	Events	Average duration
		[W]	[m³/hr]	[°C]	[kWh]	[Hours]	[m³]	[Per Year]	[Seconds]
		1050	0.007	~ ~ ~	100	100.0	2.02		
1kW Space Heating	1d	1052	0.037	34	109	103.3	3.83	-	-
2kW Space Heating	1e	2251	0.076	34	838	372.4	28.16	-	-
4kW Space Heating	1f	4250	0.144	35	590	138.9	20.03		-
DHW Low Flow Rate	2b	9093	0.184	15	754	80.2	14.78	-	-
DHW Medium Flow Rate	2b	15215	0.314	15	315	19.5	6.13	-	-
DHW High Flow Rate	2b	20058	0.411	16	470	22.1	9.10	-	-
DHW Post Low Flow Rate	2b	-	0.000	0		<u> </u>	0.00	10000	30
DHW Post Medium Flow Rate	2b	-	0.000	0	-	-	0.00	660	70
DHW Post High Flow Rate	2b	-	0.000	0	-	-	0.00	300	145
DHW Keep Warm Standby	4b	-	0.003	33	-	8023.6	24.53	-	-

Table 7.2 - Key Metrics of Low Temperature Package

8 APPENDIX B

8.1 Appliance Documentation

8.1.1 The details of the appliance documentation are given in Table 8.1 below.

Table 8.1 – Documentation Supplied

	Component:	Document Submitted (Y/N):	Manufacturer and type:
1	Space Heating Heat Exchanger		SWEP IC E8LASx40
2	Domestic Hot Water Heat Exchanger		SWEP IC E8LASx40
3	Controller for Space Heating and Hot Water Heating		Flamco Logotronic 20W
4	Control Valve and Actuator for Space Heating		Mut Meccanica VDE/ML 24 V diam 9.5 180 °
5	Space Heating Strainer		HSF Y Filter DN20 G3/4" 0,5mm
6	Control Valve and Actuator for Hot Water Heating		Mut Meccanica VDE/ML 24 V diam 9.5 180 °
7	Temperature Sensors		Tasseron TSD40AD NTC sensor 10K3, 1/8"BSP
8	Domestic Hot Water Isolating Valve		N.A.
9	Primary Side Strainer		HSF Y Filter DN20 G3/4" 0,5mm
10	Drain Valves		N.A. Drain pipe
11	Vent Valve		Flamco Flexvent H R½"
12	Circulation Pump		Wilo Pomp para 15-130/7-50 SCU-12
13	Heat Meter		N.A.
14	Domestic Hot Water Flow Sensor		Flamco Brass
15	Pipes		Novapres 880
16	Connections		HSF (18x1 copper NEN-EN 1057)
17	Joints		N.A.
18	Gaskets		Flamco Flexcon SD 8 Ltr
19	O Rings		Flamco Flopress 1/2" x 1/2"
20	Pressure Sensor		N.A.
21	Expansion Vessel		N.A.
22	Insulation		In installation manual
A1	Commissioning Guide		2.27.0.1
A2	Operation Guide		SWEP SSP G8 2022.824.1.0
A3	Declaration of Conformity		In installation manual
A4	Full Parameter List		In installation manual
A5	Maximum Primary Static Operating Differential Pressure		In installation manual
	Software Version		EMC(In installation manual)
	Model Name and Type Number		In installation manual
	Serial Number		
			M10101.016

8.2 Appliance Photographs

Figure 8.1 – Photograph of Appliance [Case Fitted]

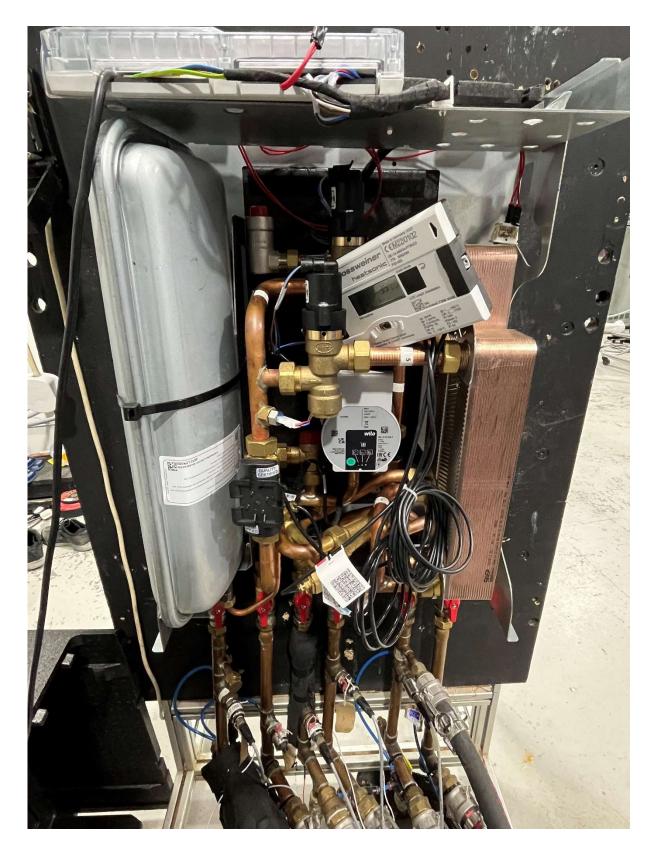


Figure 8.2 – Photograph of Appliance [Case Removed]

Figure 8.3 – Appliance Data Label

8.2 Calibrations and Uncertainties

8.3.1 A list of equipment, their calibrations and uncertainties are given in table 8.2 below.

Equipment Name	ID Number	Calibration Certificate	Measurement Uncertainty K=2 $\frac{U}{\sqrt{20}}$	Units	Calibration Date	Calibration Due
Flow Meter [Primary Flow Rate]	FM 601	K48376FW1S2	±0.0004	l/s	07/07/2021	09/2022
Flow Meter [DHW Flow Rate]	FM 602	K48378FW	±0.00305	l/s	07/07/2021	09/2022
Flow Meter [SH Flow Rate]	FM 603	K48377FW	±0.04871	l/s	06/07/2021	09/2022
Flow Meter [DHW Flow Rate]	FM 605	K48375FW	±0.00576	l/s	05/07/2021	09/2022
Pressure Transducer [Primary Supply]	PT 086	K48379P	±6.91	kPa	05/07/2021	09/2022
Pressure Transducer [Primary Return]	PT 085	K48384P	±8.54	kPa	05/07/2021	09/2022
Pressure Transducer [DHW Output Pressure]	PT 083	K48380P	±21.27	kPa	05/07/2021	09/2022
Pressure Transducer [DHW Cold Water Supply]	PT 084	K48383P2	±9.21	kPa	20/07/2021	09/2022
Pressure Transducer [SH Flow]	PT 087	K48382P	±7.10	kPa	05/07/2021	09/2022
Pressure Transducer [SH Return]	PT 088	K48381P	±15.24	kPa	05/07/2021	09/2022
PRT Probe [Primary Supply Temp]	PRT 4709	443851	±0.6	°C	10/07/2021	09/2022
PRT Probe [Primary Return Temp]	PRT 4708	443851	±0.6	°C	10/07/2021	09/2022
PRT Probe [DHW Output Temp]	PRT 4711	443852	±0.6	°C	10/07/2021	09/2022
PRT Probe [Cold Water Supply Temp]	PRT 4710	443852	±1.91	°C	10/07/2021	09/2022
PRT Probe [SH Supply Temp]	PRT 4707	443851	±0.57	°C	10/07/2021	09/2022
PRT Probe [SH Return Temp]	PRT 4706	443851	±1.06	°C	10/07/2021	09/2022

Table 8.2 - EIL Equipment Calibration and Uncertainties

Equipment Name	ID Number	Calibration Certificate	Measurement Uncertainty K=2 U $\sqrt{20}$	Units	Calibration Date	Calibration Due
Pressure Transducer [Static Pressure Test]	PT 090	U100553-19	±50	kPa	11/2020	11/2022
Power Meter [Electrical Consumption]	PM1022	U103585-20	±1.03	w	28/07/2021	09/2022
Software	VERSION – LabVIEW, Version 5, Service pack 1					

Report Issue No	Reason for Report Update
1	Original Issue
2	Data label added.

+44 (0) 1482 877500 enertekinternational.com Registered in England No. 2262638

